B.A/B.Sc.6th Semester (Honours) Examination, 2022 (CBCS) Subject: Mathematics Course: BMH6DSE31 (Mathematical Modelling)

Time:3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any ten questions		$10 \times 2 = 20$
(a)	State Poisson axioms of arrivals of a queueing system.	[2]
(b)	What are abiotic factors of an ecosystem?	[2]
(c)	What is mutualism?	[2]
(d)	What are the advantages of mathematical modelling?	[2]
(e)	Define an ecosystem. What are the different components of a	n ecosystem? [2]
(f)	What do you mean by effective arrival rate of a queueing sys capacity?	tem with finite [2]
(g)	What are the state variables for the dynamical models of ecos	ystem? [2]
(h)	What is asymptotic stability of the equilibrium state of t	the differential [2]
	equation $\frac{dx}{dt} = f(x)$?	
(i)	Define stability and instability of a fixed point of the diffe	rence equation [2]
	$x_{n+1} = f(x_n).$	
(j)	Find the probability of queue size $\geq N$ for queueing model $(M/M/1): (\infty/FCFS/\infty).$	[2]
(k)	What are the drawbacks of the Malthus model for a population?	single-species [2]
(1)	Write down the confined exponential growth model for a sing population.	gle-species [2]
(m)	Define traffic intensity of a queueing system.	[2]
(n)	Explain with an example the concept of time-delay in the modelling of growth of a population.	e mathematical [2]
(0)	Write down the logistic model of population growth explaining terms involved in it.	ng the different [2]

2. Answer any four questions

 $4 \times 5 = 20$

[5]

[5]

[5]

(a) Investigate the asymptotic stability of the equilibrium points of the model

equation
$$\frac{dx}{dt} = rx(1 - x/k).$$
 [5]

(b) The growth of a population satisfies the following difference equation

$$x_{n+1} = \frac{kx_n}{b+x_n}, \ b, k > 0.$$
 [5]

Find the steady state (if any). If so, is that stable?

- (c) Investigate the stability of the steady state of the logistic difference equation [5] $x_{n+1} = rx_n(1-x_n).$
- (d) A population is governed by the equation $\frac{dx}{dt} = x(e^{3-x}-1)$. Find all [2+3]
- (e) equilibria and determine their stability.(e) Discuss generalised least squares estimator.

(f) Show that the non-trivial equilibrium (x^*, y^*) of the predator-prey model

$$\frac{dx}{dt} = x(1 - x/k) - \frac{axy}{x + A}$$
$$\frac{dy}{dt} = y\left(\frac{ax}{x + A} - \frac{aB}{A + B}\right)$$

is unstable if k > A + 2B and asymptotically stable if B < k < A + 2B.

3. Answer any two questions $2 \times 10 = 20$

(a)

Discuss Malthus model equation of population growth
$$\frac{dN}{dt} = rN$$
. Interpret [7+3]

the equation when the sign of *r* is reversed.

- (b) (i) Explain the modelling of a system in discrete time. [6]
 - (ii) Derive the mathematical model of traffic flows. [4]
- (c) (i) Discuss generalised least squares estimator.
 - (ii) The growth of a population satisfies the following difference equation [5]

$$x_{n+1} = \frac{kx_n}{b+x_n}, \ b, k > 0.$$

Find the steady state (if any). If so, is that stable?

- (d) (i) Derive the steady state difference equations for the queueing model [5] $(M/M/1):(N/FCFS/\infty).$
 - (ii) A population satisfies the growth equation $x_{n+2} 2x_{n+1} + 2x_n = 0$. Find the [5] population in *n*-th generation. Also, find the steady state.

(B.A/B.Sc. 6th Semester (General) Examination, 2022 (CBCS) Subject: Mathematics Course: BMH6DSE32 (Industrial Mathematics)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer	any ten questions	$10 \times 2 = 20$
(a)	Define and explain convolution kernel or pointspreadfunction	n. [2]
(b)	Write a brief note on X-ray tomography.	[2]
(c)	What is a space of bounded measurable functions? Set an exa	ample. [2]
(d)	Find the Radon transformation of the body given by	[2]
	$E(x,y) = \begin{cases} 1, & 1 \le x^2 + y^2 \le 4\\ 0, & everywhere \ else. \end{cases}$	
(e)	State Beer's law.	[2]
(f)	Interpret Dirac delta function physically	[2]
(g)	State Fourier Slice theorem.	[2]
(h)	Why optoacoustic tomography is important to study back pro-	jections? [2]
(i)	What is Shepp–Logan filter?	[2]
(j)	State Rayleigh–Plancherel theorem.	[2]
(k)	What is W-interpolation of a discrete function?	[2]
(1)	Why we need to include the idea of Affine space? Explain we	ith examples. [2]
(m)	Plot the Fourier transformation of $f(x) = e^{- x }$.	[2]
(n)	Define full width half maximum of the function φ .	[2]
(0)	Establish the formula of low pass cosine filter.	[2]

2. Answer any four questions $4 \times 5 = 20$				
(a)		Construct the radiative transfer equation for X-rays.		[5]
(b)	(i)	What does an attenuation coefficient measure?		[2]
	(ii)	Why Beer's law is a plausible model for X-ray attenuation?		[3]
(c)		$\sqrt{1-t^2}$		[5]

(c) Evaluate the integral
$$\int_{s=-\sqrt{1-t^2}}^{\sqrt{1-t^2}} (1-\sqrt{t^2-s^2}) ds.$$
 [5]

(d) If a function g is defined by g(x, y) = f(x - a, y - b) and the function h [5] by h(x, y) = f(cx, cy) where f is a function defined in a plane, a and b are arbitrary real numbers and c > 0 is a positive real number. Then for all real numbers t and θ prove that

$$\mathcal{R}g(t,\theta) = \mathcal{R}f(t - a\cos\theta - b\sin\theta, \theta)$$
 and

$$\mathcal{R}h(t,\theta) = \left(\frac{1}{c}\right) \cdot \mathcal{R}f(ct,\theta)$$

where \mathcal{R} stands for Radon transform.

(e) Apply the Rayleigh-Plancherel theorem to the function $f(x) = e^{-|x|}$ in [5] order to evaluate the integral

$$\int_{-\infty}^{\infty} \frac{1}{(1+\omega^2)^2} d\omega.$$

(f) State and prove Nyquist's theorem.

3. Answer any two questions

(a) (i) The line $\ell_{\frac{1}{2'6}}$ has the standard parameterization [5]

$$x = \frac{\sqrt{3}}{4} - \frac{s}{2}$$
 and $y = \frac{1}{4} + \frac{\sqrt{3}}{2}s$, for $-\infty < s < \infty$

Find the values of s at which this line intersects the unit circle.

 $2 \times 10 = 20$

[5]

(ii) Now define f by
$$f(x, y) = \begin{cases} x, \ x^2 + y^2 \le 1\\ 0, \ x^2 + y^2 > 1 \end{cases}$$
. Compute $\mathcal{R}f\left(\frac{1}{2}, \frac{\pi}{6}\right)$. [5]

$$g(\omega) = \frac{T_2}{1+4\pi^2 T_2^{-2}(\omega-\omega_0)^2},$$

where T_2 is a constant (one of the relaxation constants related to magnetic resonance imaging) and the signal is centered around the angular frequency ω_0 .

(ii) Find a value for *B* so that the Gaussian signal

$$f(\omega) = T_2 e^{-B(\omega - \omega_0)^2}$$

has the same as the Lorentzian signal as in (i).

(c) Prove the identity

$$\frac{1}{2} + \cos\theta + \cos 2\theta + \cos 3\theta + \dots + \cos M\theta = \frac{\sin(\left(M + \frac{1}{2}\right)\theta)}{2.\sin\frac{\theta}{2}}$$

for all natural numbers M and all real θ .

(d) For a given $m \times n$ matrix A and a given vector \boldsymbol{p} in \mathbb{R}^m , let the [10] function $F: \mathbb{R}^n \to \mathbb{R}$ be defined by

$$F(\mathbf{x}) \coloneqq \|A\mathbf{x} - \mathbf{p}\|^2 = (A\mathbf{x} - \mathbf{p}). (A\mathbf{x} - \mathbf{p}), \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n.$$

Show that the gradient vector of F satisfies

$$\nabla F(\boldsymbol{x}) = 2 (A^T A \boldsymbol{x} - A^T \boldsymbol{p}), \text{ for all } \boldsymbol{x} \text{ in } \mathbb{R}^n.$$

[10]

[5]

B.A/B.Sc6thSemester (Honours) Examination, 2022 (CBCS) Subject: Mathematics Course: BMH6DSE33 (Group Theory-II)

Time:3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answei	any ten questions	$10 \times 2 = 20$	
(a)	If $f: G \to G$ such that $f(x) = x^n$ for x in G is an automorphi some fixed integer, show that $a^{n-1} \in Z(G)$ for all a in G	sm, where n is	[2]
(b)	Show that if $(Aut(G)) > 1$, then $0(G) > 2$		[2]
(c)	Show that D_4 cannot be written as internal direct product subgroups.	of two proper	[2]
(d)	If G is a finite non abelian p-group then show that $p^2 (Aut(G$)	[2]
(e)	Show that there are at most three groups of order 21		[2]
(f)	Prove that an abelian group of order $2022(n \ge 1)$ must have elements of order 2.	odd number of	[2]
(g)	Let <i>G</i> be a group and $A=G$. Show that * defined by $a*x=axa^{-1}$ group action.	a, x in G , is a	[2]
(h)	Let <i>G</i> act on <i>G</i> by conjugation, then show that $\text{Ker}(*)=Z(G)$ where $g^*a=gag^{-1}$ for all <i>a</i> , <i>g</i> in <i>G</i> .		[2]
(i)	Let G be a group acting on a set A. If $x \in A$ and Gx is the c $y \in Gx$, then show that $Gx=Gy$	orbite of x and	[2]
(j)	Let G be a group of order 10. Then prove that G has unissubgroup.	ique Sylow 5-	[2]
(k)	Let <i>G</i> be a finite group acting on a set <i>X</i> , Then prove that $ O_x $ order of <i>G</i> for every <i>x</i> in <i>X</i> . Where O_x denotes the orbit of <i>x</i> .	divides the the	[2]
(1)	Prove that a group of order 100 which has a unique Sylow commutative.	2-subgroup is	[2]
(m)	Give an example of a group of order p^3 , where p is prime numerical not abelian.	mber, which is	[2]
(n)	If G is finite abelian group and a positive integer k divides (C that G contains a subgroup of order k .	G), then prove	[2]
(0)	Consider S_4 acting on $S = \{1, 2, 3, 4\}$ defined by $\sigma \cdot x = \sigma(x)$, $x \in S$. Find all orbits of the group action.	for $\sigma \in S_4$ and	[2]

2. Aı	nswer	any four questions $4 \times 5 = 20$	
(a)		Prove that $Aut(\mathbb{Z}_2 \times \mathbb{Z}_2) \cong S_3$	[5]
(b)		Let G be a finite group of order p^n where p is a prime and $n \ge 1$. Prove that any subgroup of G of order p^{n-1} is a normal subgroup of G.	[5]
(c)		Prove that any finite abelian group is isomorphic to the direct product of finite abelian groups of the prime-power order.	[5]
(d)		Find the of the point (x_0, y_0) the group action given below.	[5]
		Let $G = \mathbb{R}$ act $X = \mathbb{R}^2$ defined by $(t, (x, y)) \rightarrow (e^t x, y)$	
(e)		Prove that $Inn(G)$ is normal in $Aut(G)$ for a group G.	[5]
(f)		Determine the number of inner automorphism of the dihedral group D_n	
		(<i>n</i> >3)	
3. Aı	nswer	any two questions $2 \times 10 = 20$	
(a)	(i)	Classify all subgroups of order 8	[5]
	(ii)	Let G be a finite group of order less than 60. If the order of G is not prime,	[5]
		then prove that G is not simple.	
(b)	(i)	Find all groups of order 28	[5]
	(ii)	Write G as a direct product of two of its proper subgroups, where G is a group of order 12.	[5]
(c)	(i)	Find the number of distinct cyclic subgroups of order 10 in the group	[5]
		$Z_{50} \times Z_{25}.$	
	(ii)	Show that number of Aut(Q_8) is less than equal to 24.	[5]
(d)	(i)	Let G be a group of order 45 with a normal P - subgroup order 9. Show that	[5]
		G is abelian.	
	(ii)	Prove that a group G of order 99 has a unique normal subgroup H of order 11 and H is a subset of $Z(G)$.	[5]